Maximal length elements of excess zero in finite Coxeter groups
نویسندگان
چکیده
منابع مشابه
Essays on Coxeter groups Coxeter elements in finite Coxeter groups
A finite Coxeter group possesses a distinguished conjugacy class of Coxeter elements. The literature about these is very large, but it seems to me that there is still room for a better motivated account than what exists. The standard references on thismaterial are [Bourbaki:1968] and [Humphreys:1990], butmy treatment follows [Steinberg:1959] and [Steinberg:1985], from which the clever parts of ...
متن کاملClimbing Elements in Finite Coxeter Groups
We define the notion of a climbing element in a finite real reflection group relative to a total order on the reflection set and we characterise these elements in the case where the total order arises from a bipartite Coxeter element.
متن کاملMinimal Length Elements in Some Double Cosets of Coxeter Groups
We study the minimal length elements in some double cosets of Coxeter groups and use them to study Lusztig’s G-stable pieces and the generalization of G-stable pieces introduced by Lu and Yakimov. We also use them to study the minimal length elements in a conjugacy class of a finite Coxeter group and prove a conjecture in [GKP].
متن کاملMaximal subsets of pairwise non-commuting elements of some finite p-groups
Let G be a group. A subset X of G is a set of pairwise noncommuting elements if xy ̸= yx for any two distinct elements x and y in X. If |X| ≥ |Y | for any other set of pairwise non-commuting elements Y in G, then X is said to be a maximal subset of pairwise non-commuting elements. In this paper we determine the cardinality of a maximal subset of pairwise non-commuting elements in any non-abelian...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ژورنال
عنوان ژورنال: Journal of Group Theory
سال: 2018
ISSN: 1435-4446,1433-5883
DOI: 10.1515/jgth-2018-0016